

Resilient food production with green tractors – The ResiTrac project

22nd International Conference on Renewable Mobility January 21st, 2025 in Berlin

K. Obermaier; A. Schröder (John Deere); P. Emberger

1. Introduction

- 2. Material and method
- 3. Field test
- 4. Test stand measurements
- 5. Summary and Outlook

Resiliant food production with green Tractors

Increase resiliance of food production by

- domestic production of plant oil
- independence from fossil fuels in agricultural machines
- supply of domestic protein feed
- regional value creation potential for rural areas
- usage of existing infrastructure

Partners:

Funding:

Co-funded by the European Union

P25KEm001

Folie 3 Obermaier - Emberger

Bild: TFZ

Development, test and introduction of tractors that can be

- operated with 100 % pure plant oil with
- equal power performance and
- equal maintenance to serial diesel operation as well as
- **comfortable regeneration** of the exhaust gas aftertreatment system

1. Introduction

2. Material and method

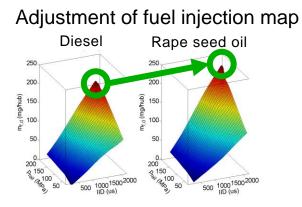
3. Field test

- 4. Test stand measurements
- 5. Summary and Outlook

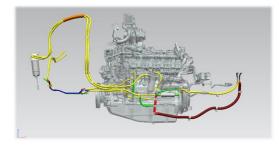
Fuel properties of rape seed oil DIN 51605

Parameter	Unit	Rapeseed oil		Diesel	
Density (15 °C)	kg/m³	920	←→	830	
Calorific value	MJ/kg	37.1	←>	42.5	Restigation
Calorific value	MJ/I	34.1	←→	35.3	Har Aurilia Balance and a second and a secon
Kin. viscosity (40 °C)	mm²/s	35.5	←>	24	
Carbon content	% by mass	77.5	←→	86.5	
Hydrogen content	% by mass	11.6	←>	12.9	
Oxygen content	% by mass	10.9		-	

Folie 6 Emberger Photo: TFZ


Approach

- Development of ECU software and fuel system adjustments
- Implementation of the adjustments on the test tractors
- Field test monitoring of the tractor concerning
 - operation behaviour
 - fuel and engine oil quality
 - real driving emissions
- Power and emission measurement on tractor test stand
- Derivation of optimization measures


Engine and tractor adaptation by John Deere

Hardware adjustment of fuel system

P25KEm001

Folie 8 Emberger - Schröder

Graphics: A. Schröder (John Deere), Photo: Speiseder (TFZ)

Overview tractors

Туре	Location	Engine power / # cyl.	Field test hours
6R 215	GER	158 kW, 6 cyl.	829
6R 215	GER	158 kW, 6 cyl.	1116
6R 195	CH/GER	143 kW, 6 cyl.	828
6R 185	GER	136 kW, 6 cyl.	540
6R 185	GER,	136 kW, 6 cyl.	854
6R 185	GER	136 kW, 6 cyl.	932
6R 150	GER	110 kW, 4 cyl.	833
6R 150	CH/GER	110 kW, 4 cyl.	768
5130 ML	GER	100 kW, 4 cyl.	test bench
5130 ML	IT	100 kW, 4 cyl.	test bench

All tractors: EU Stage V, exhaust aftertreatment (DPF, DOC, SCR)

P25KEm001

)1

 Folie 9
 Graphic: K. Obermaier, TFZ;

 Obermaier • Emberger
 Kartendaten © 2024 GeoBasis-DE/BKG (©2009), Google.Inst. Geogr. Nacional

1. Introduction

2. Material and method

3. Field test

- 4. Test stand measurements
- 5. Summary and Outlook

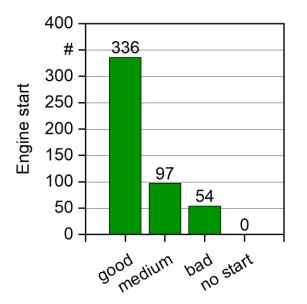
Photo: TFZ

Field test - monitored fuel quality at delivery or production

- Rapeseed oil fuel quality meets DIN 51605
- Self-produced rapeseed oil fuel at a site twice with little high water content

Parameter	Mir	n Max	Unit	I	II	III	IV	V	VI	VII	VIII	IX	Х	XI	XII
Phosphorous	-	3	mg/kg	0.5	0.4				<0.1		0.7		<0.1	<0.1	<0.1
Calcium	-	1	mg/kg	0.4	0.2	<0.1			<0.1	<0.1	0.8	0.11	0.7	0.1	0.5
Magnesium	-	1	mg/kg	<0.1	<0.1	0.4			<0.1	0.7	0.1	0.4	<0.1	<0.1	<0.1
Sulphur	-	10	mg/kg	<5	<5	<0.1			<1	0.2	1.2	<0.1	<1	<1	1.1
Oxidation stab.	6	-	h	7.95	6.74	8.27	6.45	6.64	9.40	8.59	8.31	8.89	7.10	7.87	7.27
Acid number	-	2.0	mg/g	0.721	1.746	0.443	0.660	0.640	0.063	-	1.422	0.376	0.89	0.652	0.676
Water content	-	750	mg/kg	452	247	516	562	479	35	404	766	533	648	543	756
Contamination	-	25	mg/kg	26	11	9	17	10	23	20	6	23	20	10	7

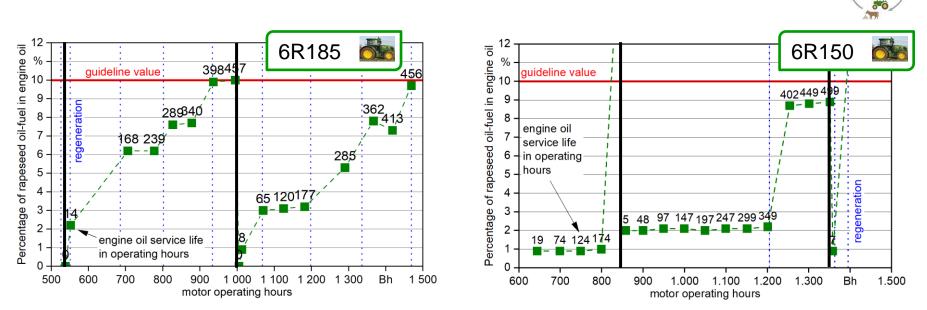
Field test - fuel quality in use



- Cleanliness of the refueling system sometimes not given
 Contamination of the fuel and unnecessary fuel filter blockage
- Raising awareness of fuel hygiene necessary in parallel to tractor market launch

Engine cold start

- Almost 70 % of engine cold starts are rated as good
- Always engine start possible



Field test – engine oil quality

- Fuel intake during normal operation very low, during EAT regeneration high
 → further optimisation necessary in ongoing project
- Other engine oil parameters OK

1. Introduction

- 2. Material and method
- 3. Field test
- 4. Test stand measurements
- 5. Summary and Outlook

Power, torque, efficiency

1,000

· Nm

- 800

700

- 600

500

400

L 300

40

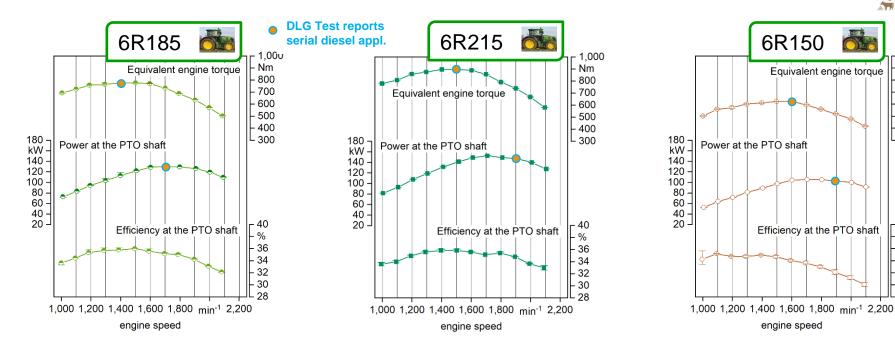
%

36

34

32

- 30


28

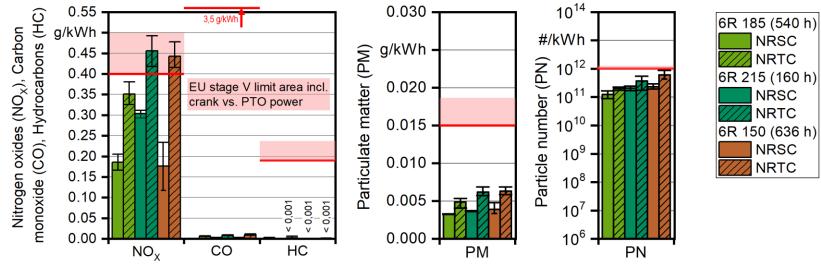
6R150

Equivalent engine torque

Efficiency at the PTO shaft

engine speed

Power and torque equal to serial diesel application


P25KEm001

Folie 16 Photo: BaySG / Graphic: TFZ Obermaier - Emberger

Emission behaviour

Emissions after exhaust gas aftertreatment during Non-Road Steady Cycle (NRSC) and Transient Cycle (NRTC)

- NO_x emissions of 2 tractors in the limit range for NRTC
- All other parameters well below the limits

1. Introduction

- 2. Material and method
- 3. Field test
- 4. Test stand measurements
- 5. Summary and Outlook

Summary

- Delivered and self-produced rape seed oil fuel quality is good
- Raising awareness of the farmers for fuel hygiene necessary
- EAT regeneration: high intake of rapeseed oil into engine oil
- Power, torque and efficiency equal to serial diesel tractors
- Emission behavior mostly within the requirements of stage V

Outlook

- Ongoing data collection in the last field test year
- Optimization of EAT regeneration; real driving emissions measurement

- Agricultural, domestic plant oil fuel supply with high quality demonstrated
- Technical solutions to use plant oil fuel in tractors are well advanced

Resilient food production with plant oil operated tractors possible

Sufficient economic and political framework conditions are lacking

Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe

Partners:

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Funding:

